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Abstract 

An a priori approach to the prediction of required 
neutron beam time for single-crystal analysis of 
biological structures is presented. Time economy is 
determined by several main features: (i) tolerable 
inaccuracy of the Fourier map, (ii) method of extract- 
ing phase information, (iii) data-collection technique. 
Phasing by anomalous scattering at two wavelengths is 
considered. An expression is derived for the error in 
scattering density arising from experimental intensity 
errors. Application of the theoretical probability dis- 
tributions for the intensities leads to an equation for the 
expected total counting time. Conditions are estab- 
fished for which the time expenditure is a minimum. 
Tables which aid easy application of the results are 
given as well as a numerical example. 

1. Introduction 

The work of Schoenborn and his colleagues (Schoen- 
born, 1969; Norvell, Nunes & Schoenborn, 1975) has 
shown that neutron diffraction can be applied success- 
fully to protein crystals. Protein neutron diffraction 
aims at the elucidation of structural features, par- 
ticularly hydrogen atoms, which are not accessible to 
X-rays. The most serious problem of such work is the 
time and expense involved in data collection. In general, 
the practicability of a neutron study depends on the 
request for beam time. 
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Neutron diffraction offers the possibility of tackling 
the phase problem by means of anomalous scattering 
from nuclei such as llaCd, 14aSm or 157Gd. This method 
has been used to solve several small crystal structures 
(e.g. Koetzle & Hamilton, 1975; Sikka & Rajagopal, 
1975). Results of an application to a protein structure 
have been reported by Schoenborn (19 75). 

The present paper is concerned with the prediction of 
experiment time when neutron anomalous scattering is 
used for phase determination. Its purpose is to provide 
a basis for experiment planning. The problem is 
approached by an analysis of the expected errors in the 
density map. 

2. Tolerable density error 

2.1. Error model 

If series termination effects are not considered the 
true scattering density is defined by the truncated 
Fourier series 

p ( r ) - / 3  + V - 1 Z  Fn c o s ( 2 z t H . r -  tpH), (1) 

where V = unit-cell volume, /3 = Fo/V = average 
scattering density, ~0 H = phase angle of structure factor 
F H, H -- reciprocal-lattice vector, and the summation is 
carried over a sphere in reciprocal space, up to a radius 
H0. 

The expected accuracy of the density can be 
predicted if a model for the errors in the Fourier 
components and a specific error criterion is assumed. 

© 1981 International Union of Crystallography 
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An integrated squared-error criterion is commonly 
accepted (its weakness consists in weighting image 
distortions just as heavily as lack of resolution). Blow 
& Crick (1959) introduced the concept of the 'best 
Fourier' with weighted coefficients (w.  FrO which has a 
lower noise level than a normal (Fn) synthesis. Their 
treatment, which is based upon phase errors only, may 
easily be generalized by the inclusion of errors in the 
structure amplitudes. 

Consider the experimental density 

pe(r) =/5 + V -1 Z w n ( F .  + AF. )  

x cos (2zcH. r -- ~0. + A~o.), (2) 

AFn and A~0n being independent random errors with 
zero mean. If we define Ap(r) = p~(r) - p(r), the mean 
square error averaged over the unit cell is given by 

2 2 o2(F~i)] ((AP) 2) = V-2 Z {F~ + wn[F . + 

-- 2wnF~(cos  A~o.)}, (3) 

where a2(F) -- ((AF)2). With the weighting function 

w . =  (cos A~p.)[1 + a2(Fn)/F~] -' ,  (4) 

the following minimum value is obtained 

((Ap)2) = V -2 Y F~(1 - wn(cos Arpn)). (5) 

Owing to the phase errors and the weights, the mean 
value (Pe(r)) lies always below the true density level. 
Therefore, the mean square error (5) is larger than the 
variance tr2(pe). 

2.2. Accuracy and correlation 

A convenient measure of the quality of density maps 
at any resolution is provided by 

G 2 = ( (Ap )2 ) / ( ( p_ /5 )2 ) ,  (6) 

where the denominator is defined as 

V-1 fv [p(r) - /5]  2 dr. 

Since 

((z~p)2) = ((p__/5)2) -I- ((Pc-- P) 2) 

-- 2 ( (Pc- -  ~ ) (p - -  /5)), (7) 

G 2 is related to the correlation coefficient defined by 

( ( P e -  P-) (P-  /5)) 
c = . ( 8 )  

{((p_/5)2) ((p e -/5)2)}1/2 

For the Fourier series (1), (2) the following mean 
values are obtained 

((P--/5)2) = V-2 Z F~ (9) 

((Pe--/5)2) : V - 2 ~ .  w2 [ ~'2rt~--H + G2(FH)] (10) 

((P--/5)(Pe--/5)) = V-2 Z wnF~(cos A~pn), (11) 

where it is understood that the summations involve 
only the terms H < H0, H 4= (000). Hence 

and 

with 

wn F~(cos A~0n) 
C =  (12) 

{ Z Vi2i }1/2{ Z 2 2 02 wn[F ~ + (Vn) ] }1/2 

G 2= 1 + k -  2k 1/2 C (13) 

WH[F. + k = Y. 2 2 a2(Vn)l/Y. V~. (14) 

If the optimum weights (4) are applied, it follows 
from (13) and (14): 

G 2 = 1 - C 2. (15) 

For an unweighted Fourier (wn = 1) which is affected 
by phase errors only one finds 

G 2 = 2(1 - C), (16) 

whereas if it is subjected to amplitude errors only a 
nonlinear relationship occurs: 

G2= C - 2 -  1. (17) 

It is well known that the phase angles are of greater 
importance than the amplitudes (Ramachandran & 
Srinivasan, 1961). This fundamental property of the 
Fourier synthesis is reflected by the different behaviour 
of (16) and (17). From the two measures of agreement 
it is the correlation coefficient which is more apt for 
describing the recognizability of a structure. 

2.3. Low-resolution maps 

The interpretability of a protein density map at low 
resolution (6 A > dmi . > 4.5 A) depends on structural 
features of the molecule and the crystal (helix content, 
aggregation of subunits, packing density) as well as on 
the accuracy of the structure factors. 

The influence of errors was studied with a hypo- 
thetical two-dimensional chain molecule (548 atoms) 
and with myoglobin (Watson, 1968) both at 6 and 
4.5 A resolution. Calculated neutron structure factors 
defined the 'true' density. A random-number routine 
was then used to generate normally distributed phase 
errors which were independent of the amplitudes. For C 
< 0.85 it was possible to trace the chain in accordance 
with the ideal maps. 

2.4. High-resolution maps 
An indication of the tolerable density error at 

high resolution (dmi n < 2A)  is provided by the 
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following argument. In protein work the quality of the 
phases is usually assessed by the figure-of-merit m n [= 
estimator of (cos A~OH), Blow & Crick (1959)] and in 
general its mean value, taken over all reflections up to 
high resolution, is about 0.7. If we assume mH to be the 
same for all reflections, (12) yields, for a weighted 
Fourier synthesis with only phase errors, C = 
(cos A~on). It is therefore suggested that C ~ 0.7 
should be sufficient for the initial Fourier map. This 
estimate has been checked with an organic molecule 
where we could identify 13 from 18 H atoms (din1 n = 
1.7 A, B = 10 A2). In the corresponding error-free map 
17 negative hydrogen peaks were clearly visible 
whereas the positive scatterers remained nonresolved. 

3. A n o m a l o u s  scat ter ing  

3.1. Phase determination 

If the unit cell contains n identical nuclei of complex 
scattering length (b = b ° + b' + ib") such as lt3Cd, 
1495m or 157Gd (Fig. 1) and N normal scatterers the 
structure factor at wavelength 2, may be written as 

FI(H)----- Fu(H) + F°n(H) + F'x(H) + iFn'I(H), (18) 

where F u and F°. denote the wavelength-independent 
parts and F'~, F% are the contributions arising from 
bl, b'l'. 

From measurements of inverse reflections, F~(+) 
and F~(- ) ,  at two suitable wavelengths (b~ 4= b~), the 
phases can be determined uniquely if the resonant 
atom positions are known: 

F](+)--F](- - )  
sin 01 = (19) 

4F~ F~' 1 

(Ramachandran & Raman, 1956); 

F ,  1 (F]2 ,2 ,2 -- Fnl)-- (F'22-- Fnz) 
cos 01 = ~ + (20) 

F '  1 2 F ~ I F ' , -  F'21 

b', b" [10 -14 m] 

157Gd 

6. 113C ~ 
4. 

0 ' ~ " ~ J  i I T ~ , \ k  L i i 

i~ ".. z --at~l 
~ 2  i_ 

--/7 _ . . . . . . . .  - - 

Fig. 1. The dispersion terms b' (dashed curves) and b" for mCd, 
149Sm and t57Gd (after Neutron Cross Sections, 1973). 

(Singh & Ramaseshan, 1968); where 0 i = ~0 i - ~o,, 

F[ 2 -  F~(+) + F~(--) _/7,,2 (21) 
- -  - - h i  

2 

and the subscripts i = 1, 2 denote the two wavelengths; 
¢Pi, ¢P. are the phase angles of F[ and F °. [Equation 
(20) differs from equation (23) of Singh & 
Ramaseshan (1968), but can be easily derived from it.] 

3.2. Errors in the structure factors 

Denote by C x the covariance matrix of the vector of 
Bijvoet pairs at the two wavelengths, x = [F](+),  ..., 
FzZ(-)]. We assume C x to be diagonal, and since F~(+) 
and Fi2(-)  are of nearly the same magnitude, 
a2[F~(+)] = o2[F~(-)] ~ 4F2u o2(Fi). 

Let y~ be the column vector (F~, sin 0 t, cos 0 t) and 
Y = (Yl,Y2). The covariance matrix of y may then be 
approximated according to the propagation of error 
formula: 

Cy = TCxT',  

where the prime denotes transposition and Tkt = 
cgyk/Ox t is evaluated from (19), (20), (21). Since for 
large structures in most cases I F~,~ -- F'21 , F"t ,~ F~ 
certain elements of T can be simplified. 

The constituents of the structure factors F~ can be 
collected in a vector z = (F~, sin ~0a, ..., cos ~0z), which 
is related to y by a linear transformation V. The 
covariance matrix of z is given by 

C~ = VCy V'. (22) 

3.3. Errors in scattering density 

The scattering density based on the structure factors 
F] (H)  may be written as 

pl(r) =/5 + V -1 ~ F~(cos ~01 cos 2zcH.r 

+ sin ~o I sin 2zcH. r). (23) 

The experimental estimates of the structure amplitudes 
and the trigonometric functions differ from their true 
values by errors AFt, A cos ~01 and A sin~01. If a 
weighting function w is attached to the experimental 
Fourier coefficients the mean square error, averaged 
over the unit cell, is given by 

((APl)2) = V-l(/[p~Xp(r)--pl(r)]2dr~ 

--  V -2 ~. { F]2 (1  - -  w) 2 

+ W 2 FPl2[0-2(cos (/71) 

+ a2(s in  ~o,)l + w 2 o'2(F~)}. (24) 
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With 

w = [ 1 + a2(cos (01) + a2(sin qh) + a2(F~)/F]2] -~, (25) 

the minimum value 

((Apt)2) = V -2 Z F~2(1 -- w) (26) 

is achieved. 
Though useful with experimental data, (26) is not 

suitable for an a priori  evaluation. We will therefore 
assume in the following that no weights are applied. 
With w = 1, F] _~ F N and substitution of (22) into (24): 

1 
((Apl)2)--  2V 2 Z (F2°'2(FI) 

it2 × {1 + bll[1 + t72(F2)/o2(FI)]}/Fn~), 

(27) 

where 

b 2) , i = 1, 2. bu = (b~,)E/(b~_ , 2 

The error of PE(r) follows from (27) by interchanging 
the indices. 

Since only the densities of the anomalous scatterers 
are wavelength dependent the redundancy contained in 
p~ and 192 can be used to calculate an averaged density 
Pro(r) = [Pl (r) + p2(r)]/2 of increased accuracy: 

((Ap,n)2) = [((Ap,) 2) + ((Ap2) 2) + 2 cov(pl,p2)]/4. 
(28) 

For small anomalous effects 

cov (Pl,P2) = V-2 Y F2{ cov (cos ~01, cos (P2) 

+ c o v  (sin qh, sin ~02)}; 

hence with (22) one obtains l±/x / 
((APm)2) - 8 V 2 F2  tr2(F') (1 + 4bu)/F"~ 2 . 

t=1 
(29) 

with 0 M = Bragg angle of the monochromator, dq~/d), is 
the spectral flux density [dq~/d2 = 2q~0242 -5 
exp (-22/22) where q~0 = total thermal flux and 2 r = 
h / ( 2 m k T )  v2 for moderator temperature T]. 

The intensity distribution "in the crystal rocking 
curve, I(Aco), and the Bragg-scattered beam, I (A20) ,  
may be described by Gaussians of variance a2(AoJ) and 
02(A20) respectively, which depend on the instrument 
parameters, the mosaic spread of the sample (G), the 
diffraction angle and the scanning mode (e.g. Dachs, 
1961; Sequeira, 1974). a(dco) i s  generally of minimum 
width when the reflecting planes of the specimen and 
the monochromator are parallel, where for large sample 
mosaicity 

o(Aco) ___ r/s (31) 

and for the angular resolution in a stationary detector 
(09 scan) accepting all diffracted neutrons 

o(A20) ~_ a. (32) 

For protein crystals (high mosaic spread, small Bragg 
angles) the co scan is preferable to the 0/20 scan. The 
focusing region (0 ~_ 0M) will comprise the bulk of 
reflections if 0 u is chosen to be equal to the maximum 
Bragg angle under investigation, 00, which implies 

cot 0 M ..~ 2dmln/2. (33) 

We postulate that the integrated intensity does not 
extend beyond +2.50 of the Gaussian profile. Then for 
the reflections to be separated at least the following 
conditions must be satisfied 

O(dO.)) ~_~ i~V-1/3/5, o(d20)  < 2V-1/3/5,  (34) 

where the real unit cell has been replaced by the 
equivalent cubic cell with side V 1/3. The upper limits for 
the full width at half height of collimation and sample 
mosaicity are then restricted to 

a '  = r/' _~ 0.5 2 V  -1/3 (35) 

[a' = 2(2 In 2)U2a]. Substitution of (33) and (35) into 
(30) gives an estimate of the attainable incident neutron 
flUX. 

4. Experimental factors 

4.1. Luminos i ty  and  resolution 

A conventional two-crystal diffractometer is con- 
sidered. If the collimations and reflectivities are 
described by Gaussians of equal horizontal and vertical 
angular dispersion a 2 for the in-pile and the mono- 
chromated beam collimator and of misorientation 
dispersion r/2 in both directions for a monochromator 
with peak reflectivity PM, the following expression is 
obtained for the neutron flux at the sample: 

~ =  (7~/2)t/EpM r]Ma4(20~2 + 4r/2 Sin 20M) -1/2 

x (232 + 4r/2) -1/2 cot 0 u 2 d~ /d2  (30) 

4.2. Background  and  absorption 

Incoherent scattering from hydrogen is the principal 
source of noise in biological structure work. Hence the 
expected background counting rate to be recorded may 
be written as 

H G Zo,.¢ 
R n = q~A - -  eA$2, (36) 

V 4zr 

where A = transmission factor, V s = volume of the 
sample, Z OincH = incoherent scattering cross section of 
hydrogen per unit cell, e = detector efficiency, A.(2 = 
solid angle of the counter. Oin cH varies with wavelength 
and binding potential between 20 and 80 x 10 -28 m 2. 
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The value o.,crx ,,~_ 50 x 10 -2s m 2 (2 = 1.5 ~,) was 
reported for myoglobin (Nunes & Norvell, 1975). 

An effective transmission factor 

A = exp (-/uV]/3) (37) 

is used in the following. The dominating processes 
which contribute to the attenuation coefficient ~ are 
hydrogen incoherent scattering and true absorption of 
the resonant scattering nuclei (oab s = 22b"); hence 

u - v - 1 Z  (a~".~ + a~b,), (38) 

where the summation is over the unit cell. 

The background is estimated from n n points in the 
vicinity of the peak. One obtains from (43) and (44): 

zc o p2 (45) a2(F)= ~ 1 + ~ + 
LF  2 4 

H o =  (1 + np/nB) Y 01,~/4~. 

r denotes the time for a 2zc rotation of the sample. The 
Lorentz factor for the equatorial plane (L = 1/sin 20) 
will be used throughout the statistical calculations. 

5. Formula for the counting time 

4.3. Errors in measurement 

If N v and N B are the gross peak and background 
counts, recorded during the times t e and t s, the net 
integrated counts are given by 

tp 
I =  Nv---~n NB (39) 

and the variance is estimated as 

o2(1) = Np + (tv/tn)2 Nn + p212, (40) 

where the last term is due to fluctuations aside from 
counting statistics. 

With 

I = e L F 2 / ~ ,  c =  ~23 VsAe /V  2 (41) 

(L = Lorentz factor, cb = Aog/t v = angular scanning 
speed) and 

o 2 (F) = cr 2 (F2)/4F 2, (42) 

the variance in F is obtained as 

Ao9 AcoRn tv p2 ~ .  
a 2 ( F ) = ~  1 +  1 +  + (43) 

4CLtl, cLF 2 4 

From (36), (41) and the conditions of peak separation 
(34), it follows that 

u " ( 4 4 )  A°,)Rn/c = AO9AOV ~, -3 Z al.c/4~z < Z oi,c/4~z. 

Further specification of o(F)  will depend on the 
mode of registration. Sequential recording with a single 
counter is susceptible to various optimizations (e.g. 
adjustment of precision for individual reflections 
according to their importance for a particular problem), 
whereas parallel recording with a multidetector implies 
the same counting time for every reflection. 

In the following we will assume that a linear 
multidetector, covering the total range of scattering 
angles (200), is used and that data are collected in 
normal beam geometry with crystal rotation. Inte- 
gration of  the Bragg peaks is performed over the 
rotation angle (Ao9) and the respective detector 
channels (A20), i.e. over nv points of the (o9,20) matrix. 

Substitution of (45) into (29) yields 

((APrn)2) = V-2 [i=i ~ ~m F~i-2 {Tt r~i(L:, I F~ + L[  2 o) 

+ 6, F 4} + M--mZ F~], (46) 

where 

Yi = rrc-'(1 + 4bu)/16 , fit = P2( 1 + 4bu)/32 

and M = 4ztH30 V/3, m = number of reflections actually 
used in the Fourier synthesis. The last term in (46) 
takes into account that M - m structure factors with 
resonance contributions smaller than a certain 
threshold value F' t' are omitted from the Fourier. 

P(Y) 

J 

0.5 t 

0 . . 
0 

\ 

\ 

I 2 3 
y _- 

Fig. 2. Probability distribution functions of y = F/<FZ> ':z for n = 
3, 5 and 6 non-centrosymmetrically arranged equal atoms 
[calculated from Pearson's (1906) tables] and the acentric 
Wilson distribution (broken line). 
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Table 1. Probability density functions and related integrals for  n = 1, 2 and the asymptotic distributions 

v'n 

f y-2p(y) dy n p(y) N(yt) y, 

1 di(y- 1) 0 1 
2 21r- '(2 --  y~)-,n 2n--' arcsin ~,/V/2) (2 -- y2)~/2/(nyt) 
C (2 /n )  '/2 exp ( - y 2 / 2 )  erf  (yt/~//2) (2/n)t:2y 7' exp ( - y 2 / 2 )  - erfc (yt/v/2) 

A C  2y exp (_y2)  1 -- exp (--yt 2) E , ( y  2) 

x co 
e r f ( x )  = 2~ --1/2 f exp (--t  2) dt, erfc (x )  = 1 - e r f ( x ) ,  El(x ) = f t -l e-tdt. 

0 x 

167 

When the same temperature factor T[ = exp ( -BH2/  
4)] is assigned to all atoms, the mean value of (46) 
takes the form 

rT' ((L~-') Z 
2 

(((AP,n)2)) = V -2 m Z (Fn,"-2) {7i 
1=1 

+ ((L t T)-E~a) + 2 6 i Z  2 (T2)} 
"1 

+ ( M - - m ) ( T  2) Z [ 
(47) 

J 

with 

(Wilson, 1942), 

N 

Z =  ~. b~= (F~)  (48) 
J= l  

~/n 
H- -2  (Fm ) = (nb~,2)-i f y-2p(y) dy/[l -- N(Yt)], (49) 

Yt 

m = M[1- -  NO't)I. (50) 

po')  is the probability distribution and N0')  the 
cumulative distribution function of the normalized 

,, 1/2 (0 < y anomalous structure amplitudes: y = F,,/n b" _ 
<_ nl/2). They depend on the number and symmetry of 
the resonant scatterers in the crystal. We will distinguish 
the cases: n -- 1, 2 and the centric (C) and acentric 
(AC) distribution (Wilson, 1949). The integrals occur- 
ring in (49) are collected in Table 1. Fig. 2 shows that 
for small n the asymptotic Wilson function is 
approached very rapidly. (FAN) = 2Z 2 (AC dis- 
tribution) has been used in (47). The average values of 
L -1 etc. over reciprocal space are given in the 
Appendix. 

Table 2. Optimum thresholds and numerical values of  
function (56) for  different distribution functions 

G 2 Yt(2) Yt(C) Yt(AC) /'(2) F(C) F(AC) 

0.6 0.70 0.53 0.62 0-48 0.28 0.39 
0.5 0.57 0.41 0-52 0.33 0.16 0.27 
0.4 0.45 0.30 0.42 0.20 0-092 0.18 
0.3 0.34 0.22 0.34 0-11 0.047 0.11 
0.2 0.22 0.14 0.25 0.050 0.018 0.062 
0.1 0.11 0.07 0.16 0.013 0.0043 0.024 

Division of (47) by V -2 N MF2N (= V -2 M(Ta)Z)  
leads to a relation between the accuracy factor G 2 (6) 
and the counting times r~: 

G 2 = N 0 ' t ) +  f y - 2 p ( y )  dy Fp+ ri - I F  l (51) 
Yt l =  1 

with 

F i =  yi((LT 1) + aS -1 ( (L  l T)-2))/nb~ '2 (T2), (52) 

2 

Fp=  2 Z n - '  ~ 61b~ '-2. (53) 
i = 1  

From a simple calculation one finds that with 

rx/r 2 = (1"111-'2) ,n (54) 

a prescribed accuracy G 2 is achieved within a minimum 
amount of total counting time r = h + r2. 

Similarly, a best threshold value Yt may be defined. If 
Yt > It, the intensities have to be measured more 
precisely in order to compensate for the loss in 
accuracy due to omitted reflections. For Yt < It, on the 
other hand, time is wasted in phasing reflections with 
poorly defined label vectors. From (54) and (51), it 
follows from Orl/Oy t = 0 that Yt has to satisfy the 
equation 

V/tl 

N(Yt  ) + y2 f y-2p(y) d y =  G 2. (55) 
r, 

Numerical solutions of (55) are listed in Table 2. With 
the auxiliary function 

F(n 'G2)= G 2 - N ( Y t )  L y -2p(y)dy  (56) 

(see Table 2), the total counting time per layer line 
takes the simple form 

(rl/2 + r,/2) 2 

r =  F(n, G 2) - F e " (57) 

We propose that (57) be used in estimating the required 
beam time for the neutron experiment. 
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6. Discussion 

6.1. Validity of  Wilson statistics 

Equation (48) is based on uncorrelated atomic scat- 
tering elements. This assumption is not fulfilled with 
low-resolution data and deviations from Wilson's 
formula are observed (e.g. Blundell & Johnson, 1976). 
Even if (48) is valid there remains some uncertainty 
concerning N, the number of atoms per primitive cell 
which participate in crystalline order. 

The influence of uncompensated correlations due to 
atomic overlap, however, should be different for X-ray 
and neutron data since scattering lengths of both signs 
can occur for neutrons. We have simulated this effect 
with myoglobin (Watson, 1968) where the negative 
scattering length of hydrogen has been attached to 
some atoms randomly distributed over the molecule. 
The average intensity, taken over all reflections within a 
sphere of radius H 0, was calculated from the atomic 
coordinates: 

( V  2) = Y. b 2 + 3 Y. bib j, (sin x j j , -  xjj, cos x u,)/x]j, 
j j~:j' 

= ,r  + A,r,  ( 58 )  

where xjj, = 2~rH01r j -- rj, I and A2Y denotes the 
contribution from the double sum. Results are shown in 
Table 3. 

Generally, for the validity of the form of Wilson's 
distribution functions it is sufficient that ( F H )  = 0. This 
condition will be fulfilled if the structure can be divided 
into segments whose positions are not correlated. Such 
a division should be possible even with a low-resolution 
protein structure (at least in the absence of pseudo- 
symmetry). This conjecture is supported by obser- 
vations of Nixon & North (1976). 

6.2. Optimum wavelength combinations 

The optimum wavelength combination is defined as 
the one for which r(2~,22) = minimum. Apart from the 
resonant isotope type it will depend mainly on the 
neutron flux distribution q' (2), the transmission factor 
A(2), the wavelength dependence of the crystal reflec- 
tivity (~23) and the required instrumental resolution 

Table 3. Calculated relative deviations A~,/,F, at 
different resolutions as a function of the amount of  
hydrogen scattering tr 2 = ~b2/,Y, (real protein: 

tr 2 ~_ 0 .2-0.3)  

d 
r a i n  

o~ 
0 
0.15 
0.2 
0.3 

6A 4A 2A 

2.96 1.17 0.046 
0.38 0.39 --0.070 

--0.15 - 0 . 1 2  0.034 
--0.18 - 0 . 3 0  -0 .034  

(~2-z). Taking these various features into account 
yields the following wavelength variation for Fi: 

tt 2 2 F t ~ (1 + 4b i i )b}  ' - 2  exp (22 i b i x + 2T/2i) (59) 

with x = n V~/3/V. 
From (57) and (59) the optimum wavelength pairs 

can be obtained for specified values ofx.  Results for the 
most important isotopes are displayed in Fig. 3. The 
graphs correspond to a 10% deviation of r(21,22) from 
the minimum. For 1~3Cd a hot source (T = 2000 K) has 
been assumed in place of a thermal one (T = 300 K). In 
the case of strong absorption the optimum region of 
157Gd is completely shifted to the low-wavelength side 
of the resonance. 

6.3. Symmetry of  the anomalous scatterers 

The required counting time depends on the sym- 
metry arrangement of the anomalous scatterers. From 
(5 7) it follows that for the two Wilson distributions 

r(C)/r(AC) > F(AC)/F(C) 

for otherwise identical conditions. With G 2 = 0.4, r(C) 
> 2r(AC). This considerable influence of symmetry 
refers to the very different probabilities for the 
occurrence of weak structure factors in the two cases. 

6.4. Unit-cell size 

From (57) one obtains that r varies approximately 
with V an n - l A ( n / V )  where A(n/V)  = transmission 
factor. For small proteins the number of reference 
scatterers will be independent of the unit-cell size. As 
the molecular weight increases, however, one has to 
consider the fact that large biomolecules are aggregates 
of similar or identical subunits. Therefore n will become 
proportional to V and hence r ~ V 5/a. A resolution of 
dmi n in the Fourier synthesis requires that V 1/3 dm] n 
layer lines are to be recorded. 

1.5 

A2[A] 

1.0 

157Gd 

149Sm 
• - _ _ - - . . . -  _-- ~ 

113Cd 
. ( ~ " _ _  o ~ ,  

O S ~ - I  i i i , I i i i , , , i i i i i i i i 

0.5 1.0 1.5 2.0 2.5 
~.1 [A] -- 

Fig. 3. Optimum wavelength regions for 15~Gd, 149Sm and mCd 
with two different absorption factors x (equation 59): x = 0.6 x 
l023 m -2 (full-line), x = 3 x 1023 m -2 (broken line). 
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7. E x a m p l e  

We take myoglobin  as an example for the applicat ion 
of  the above formulae.  The values of  the structural 
parameters  are V = 6.64 x 104 A 3, 22 = 1800 x 10 -28 
m 2, Y O~c/4n = 9400 x 10 -28 m 2, B = 15 A 2 [for the 
atomic composi t ion of  the partially deuterated unit  cell 
see Nunes  & Norvell  (1975)]. We suppose one 
anomalous  scatterer to be bound per molecule (n = 2). 
Fur thermore ,  let V s = 8 mm 3, P = 0.02,  n s = 2ne. 
Table 4 summarizes the expected count ing times for 
low- and high-resolution studies of  various derivatives. 
Clearly,  1~3Cd is by far the least suitable reference 
scatterer even if a hot  source is available. 

[er f (x)  = 2n "-v2 Jo exp ( - t  2) dt], the mean tempera ture  
factors may be written as 

Ho 
( T ) =  3 H o  3 J TH 2 d H =  f tHo(B/4) ' /2]  

0 

( T  2) = f[Ho(B/2) ~/2] 

( ( L T )  -2 )  has to be evaluated by numerical  inte- 

grat ion:  

a 
( ( L T )  -2)  = 3a -3/2 b(1 + ~b) .f Z 3/2 exp (z) dz 

0 

-- ~ab 2 exp (a) 

A P P E N D I X  

For  the calculat ion of  average values the sums over 
reciprocal space can be replaced by integrals. 

The average reciprocal  Lorentz  factor  (L -~ = sin 20) 
depends on the max imum Bragg angle 00: 

H0 
( L  - 1 )  = 3 H o  3 f L -1 H 2 d H  

o 

= 2(2 -- 5 cos 3 0 0 -t- 3 cos s 0o)/5 sin 3 00. 

Int roducing the funct ion 

/71/2 ] 
f ( x ) =  2X-2L-~-x e r f ( x ) -  e x p ( - x 2 )  , 

Table 4. Expected counting times fo r  myoglobin 
derivatives 

;t (A) 
# (mm -t) 
• (tO II 

neutrons s-l 
m-2)* 

~t 

T(d)~; 
rt(h)§ 
T(d)§ 

157Gd 149Sm u3Cd 

1.2 2.2 0.85 1.2 0.6 0.8 
0.66 1.11 0.49 0.41 0.34 0.37 

7 6-2 1.9 7 2.1 1.9 
0.5 0.75 0.4 0.5 0.3 0.4 
46 40 146 69 444 355 

1154 197 733 
6-1 5.4 20.6 9.4 76.6 58 

4 10 45 

* O o = 101° neutrons s -l m -2 (HFR Grenoble), r/~t = 25', Pu = 
0.5; a hot source is assumed for the mCd derivative. 

"~ e(2) for a high-pressure aHe detector, taken from Alberi (1975). 
dml n = 1"8 ]k, G 2 = 0"5; T = V 1/3 d ~  n (h + rE) =totalexperi- 

ment time. 
{} dml . = 5 A, G 2 = 0" 2. 
q For 2 = 2.2 A it is assumed that crystal rotation is around two 

different axes since p = 12% of the reflections lie in the blind 
region: 

3 cos 00 300 
p = l + - -  tcos00 

8 sin 20o 8 sin 30o 

with a = BH2/2,  b = ~.21B. 
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